233,Евклид – отец геометрии (кратко)

? Здравствуйте, друзья! В статье «Евклид: краткая биография, открытия, факты, видео» — о жизни древнегреческого математика и философа. «Евклид» — в переводе с древнегреческого языка означает «добрая слава».


Блок: 1/5 | Кол-во символов: 207
Источник: https://damy-gospoda.ru/evklid-kratkaya-biografiya/

Краткая биография

Биография Евклида до конца не изучена, к примеру, до сих пор неизвестен год рождения. Известно, что он появился на свет в небольшом районе Афин и был платоновским учеником.

Подъем его научной работы пришелся на правление Птолемея Первого. Некоторые сведения о его жизни можно проследить по арабским рукописям и архимедовым письмам к друзьям. Так, по ним можно определить, что Евклид был сыном греческого ученого и жил около Тира в Сирии.

С малых лет получал знания о мире от своего отца, он же привил сыну любовь к естественным наукам, а затем Евклид поступил в школу Платона, где и обучился математическим основам.

Повзрослев, его пригласили в храм Мусейон (по другим данным он был одним из его основателей), в котором собирались видные ученые с поэтами. Тут были классы для занятий. Также храм был заполнен садами с башнями астрономии, помещениями для одиноких размышлений и большой библиотекой.

В Мусейоне он смог открыть школу с лучшими математиками и монументальный труд в области математики, в котором заложил планиметрические основы со стереометрией, теорией чисел, законами алгебры, методами нахождения площадей с объемами и др.

Фрагмент папируса с текстом «Начал» Евклида

Монументальный труд — публикация «Начала». Это серия из 13 книг, представляющая собой обработанные публикации древнегреческих математиков с пятого по четвертый век до нашей эры.

Кроме «Начал», было создано еще одно сочинение — «Данные», в котором были опубликованы основы по геометрическому анализу. Кроме того, александрийский ученый создал учебник, с помощью которого в то время и сейчас изучают астрономию, перспективу, отражение в зеркале, музыкальные интервалы и решают тригонометрические задачи.

Все оставшиеся годы жизни посвятил изучению естественных наук и математических законов, отчего его называют отцом геометрии. О других аспектах его жизни неизвестно до сих пор. Умер в Александрии.

Блок: 2/7 | Кол-во символов: 1899
Источник: https://1001student.ru/istoriya/evklid-biografiya.html

Геометрия. Раздел математики


Раздел математики именуемый словом «геометрия» восходит к греческим «Земля» (гео) и «измерение» (метри). Как следует из названия данной дисциплины, грекам было нужно измерять элементарные природные формы. Практическое значение геометрии лежит в области землемерия и картографии, математических методов определения объема, площади и длины. Кроме этого, греческие ученые скоро поняли, что всякие формы подчиняются определенным закономерностям и правилам. Около 300 г. до н. э. греческий великий математик Евклид из Александрии собрал и детально обрисовал правила геометрии в труде «Начала», складывающемся из 13 книг. В нем он представил комплект определений, аксиом, теорем и математических доказательств, ставших основой геометрии как научной дисциплины. На изложенные в «Началах» положения опираются все математические дисциплины, развившиеся из геометрии. Вклад Евклида в математику настолько велик и глубок, что его называют «отцом геометрии».

Блок: 2/5 | Кол-во символов: 974
Источник: https://fib0.ru/geometriya.html

Постулаты Евклида

Его главная книга «Элементы» (первоначально написанная на древнегреческом языке) стала базовой работой важных математических учений. Она разделена на 13 отдельных книг.

  • Книги от первой до шестой посвящены геометрии плоскости.
  • Книги семь-девять имеют дело с теорией чисел
  • Книга восьмая о геометрической прогрессии
  • Книга десятая посвящена иррациональным числам
  • Книги одиннадцать-тринадцать представляют собой трехмерную геометрию (стереометрию).

Гений Евклида состоял в том, чтобы взять в оборот множество разнообразных элементов математических идей и объединить их в один логический, последовательный формат.

Лемма Евклида, которая утверждает, что фундаментальное свойство простых чисел состоит в том, что если простое число делит произведение двух чисел, оно должно делить по крайней мере одно из этих чисел.

Блок: 3/5 | Кол-во символов: 828
Источник: http://history-doc.ru/evklid/

Что такое «евклидова геометрия»?

Свои знания в планиметрии и стереометрии гениальный мыслитель формулировал в виде аксиом и постулатов. Система аксиом касалась четырёх понятий: точки, прямой, плоскости, движения, а также взаимоотношения этих понятий между собой.

Для построения конкретных фигур на плоскости или в пространстве он разработал систему постулатов, предписывающих конкретные действия. Подобная система аксиом и постулатов в современности получила название «евклидова геометрия».

Блок: 3/5 | Кол-во символов: 491
Источник: https://damy-gospoda.ru/evklid-kratkaya-biografiya/

Постулаты и аксиомы из  трудов “Начала” Евклида


Многие теоремы, приведенные в «Началах», были сформулированы не Евклидом. Вклад Евклида заключался в том, дабы привести их к единому стандарту изложения и единому комплекту первоначальных предположений либо аксиом. В их число входят пять известных универсальных аксиом Евклида.

Геометрия

Универсальные аксиомы Евклида

1) величины, равные одному и тому же, равны и между собой;

2) если к равным величинам прибавляются равные, то и целые величины будут равны;

3) если от равных величин отнимаются равные, то остатки будут равны;

4) совмещающиеся (совпадающие) друг с другом величины равны между собой;

5) целое больше части.

Пять постулатов Евклида звучат более «геометрически»:

1) от всякой точки до всякой точки возможно провести участок прямой;

2) участок прямой возможно непрерывно продолжать по прямой;

3) из любой начальной точки участка прямой всяким радиусом может быть описана окружность, наряду с этим эта точка станет ее центром;

4) все прямые углы конгруэнтны (т. е. смогут быть преобразованы друг в друга);

5) если прямая, пересекающая две прямые, образует внутренние односторонние углы, меньшие двух прямых углов (равных 90°), то, продолженные неограниченно, эти две прямые встретятся с той стороны, где углы меньше двух прямых углов.

V постулат знаменит как постулат о параллельности. Позднее было доказано, что он недоказуем, что привело к появлению новых форм геометрии, основанных на другом комплекте аксиом.

Блок: 3/5 | Кол-во символов: 1457
Источник: https://fib0.ru/geometriya.html

«Начала» Евклида

Основное сочинение Евклида называется Начала. Книги с таким же названием, в которых последовательно излагались все основные факты геометрии и теоретической арифметики, составлялись ранее Гиппократом Хиосским, Леонтом и Февдием. Однако Начала Евклида вытеснили все эти сочинения из обихода и в течение более чем двух тысячелетий оставались базовым учебником геометрии. Создавая свой учебник, Евклид включил в него многое из того, что было создано его предшественниками, обработав этот материал и сведя его воедино.

Начала состоят из тринадцати книг. Первая и некоторые другие книги предваряются списком определений. Первой книге предпослан также список постулатов и аксиом. Как правило, постулаты задают базовые построения (напр., «требуется, чтобы через любые две точки можно было провести прямую»), а аксиомы — общие правила вывода при оперировании с величинами (напр., «если две величины равны третьей, они равны между собой»).

Евклид открывает врата Сада Математики. Иллюстрация из трактата Никколо Тартальи «Новая наука»

В I книге изучаются свойства треугольников и параллелограммов; эту книгу венчает знаменитая теорема Пифагора для прямоугольных треугольников. Книга II, восходящая к пифагорейцам, посвящена так называемой «геометрической алгебре». В III и IV книгах излагается геометрия окружностей, а также вписанных и описанных многоугольников; при работе над этими книгами Евклид мог воспользоваться сочинениями Гиппократа Хиосского. В V книге вводится общая теория пропорций, построенная Евдоксом Книдским, а в VI книге она прилагается к теории подобных фигур. VII—IX книги посвящены теории чисел и восходят к пифагорейцам; автором VIII книги, возможно, был Архит Тарентский. В этих книгах рассматриваются теоремы о пропорциях и геометрических прогрессиях, вводится метод для нахождения наибольшего общего делителя двух чисел (известный ныне как алгоритм Евклида), строятся чётные совершенные числа, доказывается бесконечность множества простых чисел. В X книге, представляющей собой самую объёмную и сложную часть Начал, строится классификация иррациональностей; возможно, что её автором является Теэтет Афинский. XI книга содержит основы стереометрии. В XII книге с помощью метода исчерпывания доказываются теоремы об отношениях площадей кругов, а также объёмов пирамид и конусов; автором этой книги по общему признанию является Евдокс Книдский. Наконец, XIII книга посвящена построению пяти правильных многогранников; считается, что часть построений была разработана Теэтетом Афинским.

В дошедших до нас рукописях к этим тринадцати книгам прибавлены ещё две. XIV книга принадлежит александрийцу Гипсиклу (ок. 200 г. до н. э.), а XV книга создана во время жизни Исидора Милетского, строителя храма св. Софии в Константинополе (начало VI в. н. э.).

Начала предоставляют общую основу для последующих геометрических трактатов Архимеда, Аполлония и других античных авторов; доказанные в них предложения считаются общеизвестными. к Началам в античности составляли Герон, Порфирий, Папп, Прокл, Симпликий. Сохранился комментарий Прокла к I книге, а также комментарий Паппа к X книге (в арабском переводе). От античных авторов комментаторская традиция переходит к арабам, а потом и в Средневековую Европу.

В создании и развитии науки Нового времени Начала также сыграли важную идейную роль. Они оставались образцом математического трактата, строго и систематически излагающего основные положения той или иной математической науки.

Блок: 3/10 | Кол-во символов: 3459
Источник: https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4

Алгоритм Евклида


Используя лемму Евклида, эта теорема утверждает, что каждое целое число больше единицы либо само по себе простое число, либо произведение простых чисел и что существует определенный порядок простых чисел.

«Если два числа, умножая одно на другое, составляют некоторое число, и любое число, которое делится на их произведение, также будет делиться на каждое из исходных чисел».

Евклидов алгоритм — эффективный метод вычисления наибольшего общего делителя (НОД) двух чисел, наибольшего числа, которое делит их оба, не оставляя остатка.

Блок: 4/5 | Кол-во символов: 550
Источник: http://history-doc.ru/evklid/

Достижения Евклида

Основная масса трудов учёного была написана по математике:

  • «Начала»;
  • «О делении фигур»;
  • «Конические сечения»;
  • «Поризмы» — о кривых линиях и условиях, их определяющих;
  • «Псевдария» — трактат об ошибках, возникающих при геометрических доказательствах.

Известны труды учёного по смежным дисциплинам – музыке, астрономии, оптике:

  • «Явления» — о практическом применении геометрии к изучению астрономии;
  • «Оптика» — о свете и законах его распространения;
  • «Катоптрика» — о зеркалах и преломлении света;
  • «Деление канона» — элементарная теория музыки.

Арабские учёные считают этого математика автором некоторых работ по механике и определению удельного веса тел.

В этом видео дополнительная и интересная информация к статье «Евклид: краткая биография, открытия, факты, видео»

? Друзья, если вам понравилась статья «Евклид: краткая биография, открытия, факты», поделитесь  в социальных сетях.

Блок: 4/5 | Кол-во символов: 901
Источник: https://damy-gospoda.ru/evklid-kratkaya-biografiya/

Евклид и античная философия

Уже со времён пифагорейцев и Платона арифметика, музыка, геометрия и астрономия (так называемые «математические» науки; позже Боэцием названные квадривием) рассматривались в качестве образца систематического мышления и предварительной ступени для изучения философии. Не случайно возникло предание, согласно которому над входом в платоновскую Академию была помещена надпись «Да не войдёт сюда не знающий геометрии».

Геометрические чертежи, на которых при проведении вспомогательных линий неявная истина становится очевидной, служат иллюстрацией для учения о припоминании, развитого Платоном в Меноне и других диалогах. Предложения геометрии потому и называются теоремами, что для постижения их истины требуется воспринимать чертёж не простым чувственным зрением, но «очами разума». Всякий же чертёж к теореме представляет собой идею: мы видим перед собой эту фигуру, а ведём рассуждения и делаем заключения сразу для всех фигур одного с ней вида.

Некоторый «платонизм» Евклида связан также с тем, что в Тимее Платона рассматривается учение о четырёх элементах, которым соответствуют четыре правильных многогранника (тетраэдр — огонь, октаэдр — воздух, икосаэдр — вода, куб — земля), пятый же многогранник, додекаэдр, «достался в удел фигуре вселенной». В связи с этим Начала могут рассматриваться как развёрнутое со всеми необходимыми посылками и связками учение о построении пяти правильных многогранников — так называемых «платоновых тел», завершающееся доказательством того факта, что других правильных тел, кроме этих пяти, не существует.

Для аристотелевского учения о доказательстве, развитого во Второй аналитике, Начала также предоставляют богатый материал. Геометрия в Началах строится как выводная система знаний, в которой все предложения последовательно выводятся одно за другим по цепочке, опирающейся на небольшой набор начальных утверждений, принятых без доказательства. Согласно Аристотелю, такие начальные утверждения должны иметься, так как цепочка вывода должна где-то начинаться, чтобы не быть бесконечной. Далее, Евклид старается доказывать утверждения общего характера, что тоже соответствует любимому примеру Аристотеля: «если всякому равнобедренному треугольнику присуще иметь углы, в сумме равные двум прямым, то это присуще ему не потому что он равнобедренный, а потому что он треугольник» (An. Post. 85b12).

Блок: 5/10 | Кол-во символов: 2362
Источник: https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4

Геометрия и компьютерная графика


Компьютерная анимация (CGI) преображает сложные природные формы (такие, как лицо) в комплект несложных форм. Так, сложный объект создаётся за счет комбинации несложных объектов и может изменяться в следствии трансформации их геометрии. В базе данной идеи — изучения математиков, например, французско-американского ученого Бенуа Мандельброта, который в 1974 г. продемонстрировал, что естественные формы подчиняются правилам фрактальной размерности (неэвклидова геометрия), а в рамках классической евклидовой геометрии смогут быть измерены только примерно.

Компьютерная графика на основе фракталов Мандельброта

О том как знание математики позволяет заработать на майнинге криптовалюты.

Tags: «Начала» Евклида геометрия история математики

Блок: 5/5 | Кол-во символов: 767
Источник: https://fib0.ru/geometriya.html

Псевдо-Евклид

Евклиду приписываются два важных трактата об античной теории музыки: «Гармоническое введение» («Гармоника») и «Деление канона» (лат. Sectio canonis). Традиция приписывать «Деление канона» Евклиду идёт ещё от Порфирия. В старинных рукописях «Гармоники» авторство приписывается Евклиду, некоему Клеониду, а также александрийскому математику Паппу. Генрих Мейбомrude (1555—1625) снабдил «Гармоническое введение» обстоятельными примечаниями, и вместе с «Делением канона» приписал их к трудам Евклида.

При последующем подробном анализе этих трактатов было определено, что первый написан в аристоксеновской традиции (например, в нём все полутоны считаются равными), а второй по стилю — явно пифагорейский (например, отрицается возможность деления тона ровно пополам). Стиль изложения «Гармонического введения» отличается догматизмом и непрерывностью, стиль «Деления канона» несколько схож с «Началами» Евклида, поскольку содержит теоремы и доказательства.

После критической публикации «Гармоники» знаменитым немецким филологом Карлом Яном (1836—1899) этот трактат стали повсеместно приписывать Клеониду и датировать II в. н.э. В русском переводе (с комментариями) его впервые издал Г. А. Иванов (Москве, 1894). «Деление канона» ныне одна часть исследователей считает аутентичным сочинением Евклида, а другая — анонимным сочинением в традициях Евклида. Последние по времени русские переводы «Деления канона» опубликованы (в версии Порфирия) В.Г.Цыпиным и (в версии Боэция) С.Н.Лебедевым. Критическое издание оригинального текста «Деления канона» выполнил в 1991 г. А.Барбера.

Блок: 6/10 | Кол-во символов: 1584
Источник: https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4

Достижения Евклида


Достижения Евклида имели огромное значение для мировой истории, математики и других наук.

Он был первым, кто:

  • систематизировал известные труды предшественников в единый сборник из 13 книг;
  • создал 5 постулатов НОД и 5 аксиом в области геометрии;
  • охарактеризовал все известные геометрические фигуры, дал понятие кривым линиям, коническим сечениям и другим явлениям;
  • создал трактат по ошибкам при изучении и создании геометрических доказательств;
  • доказал практическое использовании математики при изучении звезд, небесных тел, космоса и других наук;
  • изучил свет с законами его распространения;
  • изучил зеркала и способности преломления в них световых лучей;
  • создал простейшую теорию в области музыки;
  • создал постулаты и формулы по механики и определил удельный вес тел.

Математика

Евклид — отец математики. Он сформулировал теоремы по планиметрии, упростил понимание теоремы Пифагора и теоремы о сумме углов треугольника, прописал свойства правильных многоугольников и законы построения правильных пятнадцатиугольников, указал, как применима алгебры в жизни и каковы ее основные теории, вписал теорию о целом и рациональном числе, рассмотрел квадратичную иррациональность, заложил основы стереометрической науки, доказал теоремы, касающиеся площади круга с объемом шара, вывел отношение объема пирамид с конусами, призмами и цилиндрами.

Другие науки

Помимо математики, ученый работал с оптикой, астрономией, логикой и музыкой. Так, в оптике он дал сведения об оптической перспективе, зеркальных искажениях и отражениях световых лучей в зеркале.

Блок: 6/7 | Кол-во символов: 1561
Источник: https://1001student.ru/istoriya/evklid-biografiya.html

Тексты и переводы

Старые русские переводы

  • Эвклидовы элементы из двенадцати нефтоновых книг выбранные и в осмь книг чрез профессора мафематики А. Фархварсона сокращённые. / Пер. с лат. И. Сатарова. СПб., 1739. 284 стр.
  • Елементы геометрии, то есть первые основания науки о измерении протяжении, состоящие из осьми Евклидовых книг. / Пер. с франц. Н. Курганова. СПб., 1769. 288 стр.
  • Евклидовых стихий осьмь книг, а именно: 1-я, 2-я, 3-я, 4-я, 5-я, 6-я, 11-я и 12-я. / Пер. с греч. СПб., 1784. 370 стр.
    • 2-е изд. … к сим прилагаются книги 13-я и 14-я. 1789. 424 стр.
  • Эвклидовых начал восемь книг, а именно: первые шесть, 11-я и 12-я, содержащие в себе основания геометрии. / Пер. Ф. Петрушевского. СПб., 1819. 480 стр.
  • Эвклидовых начал три книги, а именно: 7-я, 8-я и 9-я, содержащие общую теорию чисел древних геометров. / Пер. Ф. Петрушевского. СПб., 1835. 160 стр.
  • Восемь книг геометрии Эвклида. / Пер. с нем. воспитанниками реального училища… Кременчуг, 1877. 172 стр.
  • Начала Евклида. / С введ. и толкованиями М. Е. Ващенко-Захарченко. Киев, 1880. XVI, 749 стр.

Средневековые армянские переводы

В XI веке н.э. Григор Магистрос перевел с греческого на армянский «Начала» Евклида. Более обширный перевод Евклида сделан в позднем средневековье и приписывается автору XVII века Григору Кесараци.

Современные издания сочинений Евклида

  • Heath T. L. The thirteen books of Euclid’s Elements. 3 vols. Cambridge UP, 1925. Editions and translations: Greek (ed. J. L. Heiberg), English (ed. Th. L. Heath)
  • Euclide. Les éléments. 4 vols. Trad. et comm. B. Vitrac; intr. M. Caveing. P.: Presses universitaires de France, 1990—2001.
  • Barbera A. The Euclidian Division of the Canon: Greek and Latin Sources // Greek and Latin Music Theory. Vol. 8. Lincoln: University of Nebraska Press, 1991.

Блок: 7/10 | Кол-во символов: 1774
Источник: https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4

Интересные факты из жизни


Несколько любопытных фактов из биографии Евклида:

  1. Самый древний известный математический трактат принадлежит Евклиду.
  2. До сих пор нет данных о месте рождения и смерти великого ученого. Однако известно место занятий Евклида примерно 2400 лет назад и место его нахождения — Александрия. Интересно, что этот городок сегодня — второй по размерам в Египте после Каира;
  3. Евклид смог создать 4 книжки по коническому виду сечений.
  4. Фундаментальный труд «Начала» считается настолько важным для науки, что до сих пор его используют в жизни. Интересно, что есть другие публикации с подобным наименованием, но самый популярный — труд Евклида».
  5. С самой юности Евклид обучался у именитого ученого Платона, обучавшего Аристотеля в Древней Греции. Сам же Платон обучался у Сократа.
  6. По традиции геометрия сегодня носит название этого ученого.
  7. Есть легенда, что когда один раз ученик величайшего математика спросил у него, как геометрия может помочь ему в жизни, то Евклид дал ему денег и прогнал с занятий.
  8. Евклид до сих пор считается автором многочисленных книг, чье авторство не было подтверждено. Это разные труды, к примеру, публикации по музыке, философии и медицине. Официально известно, что великий ученый сделал открытие в оптических и астрономических областях.
  9. Сегодня признают римановскую, лобачевскую и евклидову геометрию. Последняя — самая традиционная и часто используемая.
  10. В первый раз евклидовский труд перевели в конце восемнадцатого века. При этом «Начала» впервые были переведены на армянский язык в одиннадцатом веке.
  11. Любимая фраза: «Нет царского пути в геометрии».

В целом, Евклид является отцом геометрии, и он не случайно так называется. Он первым сделал сложное понятным и дал толчок развитию естественных наук. Его книги неоценимы по значимости и применяются сегодня в области математических и геометрических наук во всем мире.

Блок: 7/7 | Кол-во символов: 1860
Источник: https://1001student.ru/istoriya/evklid-biografiya.html

Литература

Фрагмент из русского перевода «Начал Евлкида» Бирна.

Биография

Библиография

  • Max Steck. Bibliographia Euclideana. Die Geisteslinien der Tradition in den Editionen der «Elemente» des Euklid (um 365—300). Handschriften, Inkunabeln, Frühdrucke (16.Jahrhundert). Textkritische Editionen des 17.-20. Jahrhunderts. Editionen der Opera minora (16.-20.Jahrhundert). Nachdruck, herausgeg. von Menso Folkerts. Hildesheim: Gerstenberg, 1981.

Античные Начал

  • Прокл Диадох. к первой книге «Начал» Евклида. Введение. Пер. и комм. Ю. А. Шичалина. М.: ГЛК, 1994.
  • Прокл Диадох. Комментарий к первой книге «Начал» Евклида / Перевод А. И. Щетникова. — М.: Русский фонд содействия образованию и науке, 2013.
  • Thompson W. Pappus’ commentary on Euclid’s Elements. Cambridge, 1930.

Исследования

О Началах Евклида

  • Алимов Н. Г. Величина и отношение у Евклида. Историко-математические исследования, вып. 8, 1955, с. 573—619.
  • Башмакова И. Г. Арифметические книги «Начал» Евклида. Историко-математические исследования, вып. 1, 1948, с. 296—328.
  • Ван дер Варден Б. Л. Пробуждающаяся наука. М.: Физматгиз, 1959.
  • Выгодский М. Я. «Начала» Евклида. Историко-математические исследования, вып. 1, 1948, с. 217—295.
  • Глебкин В. В. Наука в контексте культуры: («Начала» Евклида и «Цзю чжан суань шу»). М.: Интерпракс, 1994. 188 стр. 3000 экз. ISBN 5-85235-097-4
  • Каган В. Ф. Евклид, его продолжатели и комментаторы. В кн.: Каган В. Ф. Основания геометрии. Ч. 1. М., 1949, с. 28-110.
  • Раик А. Е. Десятая книга «Начал» Евклида. Историко-математические исследования, вып. 1, 1948, с. 343—384.
  • Родин А. В. Математика Евклида в свете философии Платона и Аристотеля. М.: Наука, 2003.
  • Цейтен Г. Г. История математики в древности и в средние века. М.-Л.: ОНТИ, 1938.
  • Щетников А. И. Вторая книга «Начал» Евклида: её математическое содержание и структура. Историко-математические исследования, вып. 12(47), 2007, с. 166—187.
  • Щетников А. И. Сочинения Платона и Аристотеля как свидетельства о становлении системы математических определений и аксиом. ΣΧΟΛΗ, вып. 1, 2007, c. 172—194.
  • Artmann B. Euclid’s «Elements» and its prehistory. Apeiron, v. 24, 1991, p. 1-47.
  • Brooker M.I.H., Connors J. R., Slee A. V. Euclid. CD-ROM. Melbourne, CSIRO-Publ., 1997.
  • Burton H.E. The optics of Euclid. J. Opt. Soc. Amer., v. 35, 1945, p. 357—372.
  • Itard J. Lex livres arithmetiqués d’Euclide. P.: Hermann, 1961.
  • Fowler D.H. An invitation to read Book X of Euclid’s Elements. Historia Mathematica, v. 19, 1992, p. 233—265.
  • Knorr W.R. The evolution of the Euclidean Elements. Dordrecht: Reidel, 1975.
  • Mueller I. Philosophy of mathematics and deductive structure in Euclid’s Elements. Cambridge (Mass.), MIT Press, 1981.
  • Schreiber P. Euklid. Leipzig: Teubner, 1987.
  • Seidenberg A. Did Euclid’s Elements, Book I, develop geometry axiomatically? Archive for History of Exact Sciences, v. 14, 1975, p. 263—295.
  • Staal J.F. Euclid and Panini // Philosophy East and West.1965.№ 15. P. 99-115.
  • Taisbak C.M. Division and logos. A theory of equivalent couples and sets of integers, propounded by Euclid in the arithmetical books of the Elements. Odense UP, 1982.
  • Taisbak C.M. Colored quadrangles. A guide to the tenth book of Euclid’s Elements. Copenhagen, Museum Tusculanum Press, 1982.
  • Tannery P. La géometrié grecque. Paris: Gauthier-Villars, 1887.

О других сочинениях Евклида

  • Зверкина Г. А. Обзор трактата Евклида «Данные». Математика и практика, математика и культура. М., 2000, с. 174—192.
  • Ильина Е. А. О «Данных» Евклида. Историко-математические исследования, вып. 7(42), 2002, с. 201—208.
  • Шаль М. О поризмах Евклида. // Исторический обзор происхождения и развития геометрических методов. М., 1883.
  • Berggren J.L., Thomas R.S.D. Euclid’s Phaenomena: a translation and study of a Hellenistic treatise in spherical astronomy. NY, Garland, 1996.
  • Schmidt R. Euclid’s Recipients, commonly called the Data. Golden Hind Press, 1988.
  • С. Кутателадзе Апология Евклида

Блок: 8/10 | Кол-во символов: 3890
Источник: https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4

Кол-во блоков: 25 | Общее кол-во символов: 28252
Количество использованных доноров: 6
Информация по каждому донору:

  1. https://1001student.ru/istoriya/evklid-biografiya.html: использовано 4 блоков из 7, кол-во символов 6459 (23%)
  2. https://ru.wikipedia.org/wiki/%D0%95%D0%B2%D0%BA%D0%BB%D0%B8%D0%B4: использовано 5 блоков из 10, кол-во символов 13069 (46%)
  3. https://damy-gospoda.ru/evklid-kratkaya-biografiya/: использовано 3 блоков из 5, кол-во символов 1599 (6%)
  4. https://obrazovaka.ru/evklid.html: использовано 3 блоков из 7, кол-во символов 2549 (9%)
  5. https://fib0.ru/geometriya.html: использовано 3 блоков из 5, кол-во символов 3198 (11%)
  6. http://history-doc.ru/evklid/: использовано 2 блоков из 5, кол-во символов 1378 (5%)


Поделитесь в соц.сетях:

Оцените статью:

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Добавить комментарий